Nodes Browser
ComfyDeploy: How ComfyUI-KwaiKolorsWrapper works in ComfyUI?
What is ComfyUI-KwaiKolorsWrapper?
Rudimentary wrapper that runs [a/Kwai-Kolors](https://huggingface.co/Kwai-Kolors/Kolors) text2image pipeline using diffusers.
How to install it in ComfyDeploy?
Head over to the machine page
- Click on the "Create a new machine" button
- Select the
Edit
build steps - Add a new step -> Custom Node
- Search for
ComfyUI-KwaiKolorsWrapper
and select it - Close the build step dialig and then click on the "Save" button to rebuild the machine
ComfyUI wrapper for Kwai-Kolors
Rudimentary wrapper that runs Kwai-Kolors text2image pipeline using diffusers.
Update - safetensors
Added alternative way to load the ChatGLM3 model from single safetensors file (the configs are included in this repo already). Including already quantized models:
https://huggingface.co/Kijai/ChatGLM3-safetensors/upload/main
goes into:
ComfyUI\models\LLM\checkpoints
Installation:
Clone this repository to 'ComfyUI/custom_nodes` folder.
Install the dependencies in requirements.txt, transformers version 4.38.0 minimum is required:
pip install -r requirements.txt
or if you use portable (run this in ComfyUI_windows_portable -folder):
python_embeded\python.exe -m pip install -r ComfyUI\custom_nodes\ComfyUI-KwaiKolorsWrapper\requirements.txt
Models (fp16, 16.5GB) are automatically downloaded from https://huggingface.co/Kwai-Kolors/Kolors/tree/main
to ComfyUI/models/diffusers/Kolors
Model folder structure needs to be the following:
PS C:\ComfyUI_windows_portable\ComfyUI\models\diffusers\Kolors> tree /F
│ model_index.json
│
├───scheduler
│ scheduler_config.json
│
├───text_encoder
│ config.json
│ pytorch_model-00001-of-00007.bin
│ pytorch_model-00002-of-00007.bin
│ pytorch_model-00003-of-00007.bin
│ pytorch_model-00004-of-00007.bin
│ pytorch_model-00005-of-00007.bin
│ pytorch_model-00006-of-00007.bin
│ pytorch_model-00007-of-00007.bin
│ pytorch_model.bin.index.json
│ tokenizer.model
│ tokenizer_config.json
│ vocab.txt
│
└───unet
config.json
diffusion_pytorch_model.fp16.safetensors
To run this, the text enconder is what takes most of the VRAM, but can be quantized to fit approximately these amounts:
| Model | Size | |--------|------| | fp16 | ~13 GB| | quant8 | ~8 GB | | quant4 | ~4 GB |
After that, the sampling single image at 1024 can be expected to take similar amounts than SDXL. For VAE the base SDXL VAE is used.